Search results for "BANACH SPACE"
showing 10 items of 281 documents
The approximate subdifferential of composite functions
1993
This paper deals with the approximate subdifferential chain rule in a Banach space. It establishes specific results when the real-valued function is locally Lipschitzian and the mapping is strongly compactly Lipschitzian.
Geometry of spaces of compact operators
2008
We introduce the notion of compactly locally reflexive Banach spaces and show that a Banach space X is compactly locally reflexive if and only if $\mathcal{K}(Y,X^{**})\subseteq\mathcal{K}(Y,X)^{**}$ for all reflexive Banach spaces Y. We show that X * has the approximation property if and only if X has the approximation property and is compactly locally reflexive. The weak metric approximation property was recently introduced by Lima and Oja. We study two natural weak compact versions of this property. If X is compactly locally reflexive then these two properties coincide. We also show how these properties are related to the compact approximation property and the compact approximation prope…
On $p$-Dunford integrable functions with values in Banach spaces
2018
[EN] Let (Omega, Sigma, mu) be a complete probability space, X a Banach space and 1 X. Special attention is paid to the compactness of the Dunford operator of f. We also study the p-Bochner integrability of the composition u o f: Omega->Y , where u is a p-summing operator from X to another Banach space Y . Finally, we also provide some tests of p-Dunford integrability by using w*-thick subsets of X¿.
On the Unit Ball of Operator-valued H 2-functions
2009
Let X be a complex Banach space and let H 2 (\( \mathbb{D} \), X) denote the space of X-valued analytic functions in the unit disc such that $$ \mathop {sup}\limits_{0 < r < 1} \int_0^{2\pi } {\left\| {F\left( {re^{it} } \right)} \right\|^2 \frac{{dt}} {{2\pi }} < \infty .} $$ It is shown that a function F belongs to the unit ball of H 2 ( \( \mathbb{D} \), X) if and only if there exist f∈H ∞ (\( \mathbb{D} \), X) and ϕ∈H ∞ (\( \mathbb{D} \)) such that $$ \left\| {f\left( z \right)} \right\|^2 + \left| {\varphi \left( z \right)} \right|^2 \leqslant 1 and F\left( z \right) = \frac{{f\left( z \right)}} {{1 - z\varphi \left( z \right)}} $$ for |z| < 1.
POLYNOMIAL NUMERICAL INDEX FOR SOME COMPLEX VECTOR-VALUED FUNCTION SPACES
2007
We study in this paper the relation between the polynomial numerical indices of a complex vector-valued function space and the ones of its range space. It is proved that the spaces C(K,X), and L∞(μ,X) have the same polynomial numerical index as the complex Banach space X for every compact Hausdorff space K and every σ-finite measure μ, which does not hold any more in the real case. We give an example of a complex Banach space X such that, for every k > 2, the polynomial numerical index of order k of X is the greatest possible, namely 1, while the one of X∗∗ is the least possible, namely k k 1−k . We also give new examples of Banach spaces with the polynomial Daugavet property, namely L∞(μ,X…
Banach spaces of general Dirichlet series
2018
Abstract We study when the spaces of general Dirichlet series bounded on a half plane are Banach spaces, and show that some of those classes are isometrically isomorphic between themselves. In a precise way, let { λ n } be a strictly increasing sequence of positive real numbers such that lim n → ∞ λ n = ∞ . We denote by H ∞ ( λ n ) the complex normed space of all Dirichlet series D ( s ) = ∑ n b n λ n − s , which are convergent and bounded on the half plane [ Re s > 0 ] , endowed with the norm ‖ D ‖ ∞ = sup Re s > 0 | D ( s ) | . If (⁎) there exists q > 0 such that inf n ( λ n + 1 q − λ n q ) > 0 , then H ∞ ( λ n ) is a Banach space. Further, if there exists a strictly increasing sequ…
Optimal retraction problem for proper $k$-ball-contractive mappings in $C^m [0,1]$
2019
In this paper for any $\varepsilon >0$ we construct a new proper $k$-ball-contractive retraction of the closed unit ball of the Banach space $C^m [0,1]$ onto its boundary with $k < 1+ \varepsilon$, so that the Wośko constant $W_\gamma (C^m [0,1])$ is equal to $1$.
Henstock–Kurzweil–Pettis integrability of compact valued multifunctions with values in an arbitrary Banach space
2013
Abstract The aim of this paper is to describe Henstock–Kurzweil–Pettis (HKP) integrable compact valued multifunctions. Such characterizations are known in case of functions (see Di Piazza and Musial (2006) [16] ). It is also known (see Di Piazza and Musial (2010) [19] ) that each HKP-integrable compact valued multifunction can be represented as a sum of a Pettis integrable multifunction and of an HKP-integrable function. Invoking to that decomposition, we present a pure topological characterization of integrability. Having applied the above results, we obtain two convergence theorems, that generalize results known for HKP-integrable functions. We emphasize also the special role played in …
Proper 1-ball contractive retractions in Banach spaces of measurable functions
2005
In this paper we consider the Wosko problem of evaluating, in an infinite-dimensional Banach space X, the infimum of all k > 1 for which there exists a k-ball contractive retraction of the unit ball onto its boundary. We prove that in some classical Banach spaces the best possible value 1 is attained. Moreover we give estimates of the lower H-measure of noncompactness of the retractions we construct. 1. Introduction Let X be an infinite-dimensional Banach space with unit closed ball B(X) and unit sphere S(X). It is well known that, in this setting, there is a retraction of B(X) onto S(X), that is, a continuous mapping R : B(X) ! S(X) with Rx = x for all x 2 S(X). In (4) Benyamini and Sternf…
A bilinear version of Orlicz–Pettis theorem
2008
Abstract Given three Banach spaces X, Y and Z and a bounded bilinear map B : X × Y → Z , a sequence x = ( x n ) n ⊆ X is called B -absolutely summable if ∑ n = 1 ∞ ‖ B ( x n , y ) ‖ Z is finite for any y ∈ Y . Connections of this space with l weak 1 ( X ) are presented. A sequence x = ( x n ) n ⊆ X is called B -unconditionally summable if ∑ n = 1 ∞ | 〈 B ( x n , y ) , z ∗ 〉 | is finite for any y ∈ Y and z ∗ ∈ Z ∗ and for any M ⊆ N there exists x M ∈ X for which ∑ n ∈ M 〈 B ( x n , y ) , z ∗ 〉 = 〈 B ( x M , y ) , z ∗ 〉 for all y ∈ Y and z ∗ ∈ Z ∗ . A bilinear version of Orlicz–Pettis theorem is given in this setting and some applications are presented.